
Understanding Databases
!

When I work on a jigsaw puzzle, it’s to enjoy working on it with my family. It generally

takes days over the Christmas holiday to solve one puzzle each year.

When I study something, it’s generally because I want to, need to, or get paid to. My

assumption is that you got this book because you need to understand how databases work; and

this is where you’re starting or restarting your learning process.

This chapter explains what a database is, why it’s important, and how it works.

What’s a database?
A database is an organized set of data. You create and maintain a database by using a

software application. The simplest database is a two-dimensional table, like a worksheet.

Worksheets have columns and rows. Each column describes a piece of data. The

collection of columns defines the subject of the data, and the rows contain instances of the

subject.

Modern spreadsheet programs support collections of worksheets in a single file. They call

that single file a workbook. Likewise, databases typically consist of more than one table because

we seldom manage data in isolation.

You create workbooks, or collections of worksheets, with application software. There are

three major vendors in that application software market; and, they are Microsoft Excel, Apple

Numbers, and Open Office Calc. You can create powerful workbook solutions with any of these

spreadsheet products.

After you create a workbook solution, you maintain the various spreadsheets by using the

application software. The application software lets you add, modify, or delete data from any part

of the workbook. Data inside spreadsheets can be simple – numbers and strings, or data can be

complex, like formulas. You also can link worksheets to external database sources, which makes

the simple data dynamic. At the more advanced level, you can create solutions that link

workbook files together. This type of solution combines multiple workbook files into an

analytical appliance. This type of multi-document workbook acts like a database.

Application software is a set of programs that let you create and maintain workbooks or

databases. We call the application software of a database a database management system

(DBMS).

Copyright © 2014 Michael McLaughlin All rights reserved. 2!

DBMS is the most generic acronym for databases. DBMS can describe application

software that manages files, relational tables, or name-value pairs. A DBMS that works with files

typically works with flat files. Flat files are fields of descriptive information. The fields in flat

files are delimited by commas or tabs, or organized by character position. DBMS also can

describe hierarchical, networked, relational, object-oriented, or JSON structures databases.

• Hierarchical structures act like inverted trees, where you have a root node that descends

through nodes to leaf nodes. Leaf nodes are nodes without dependent nodes.

• Networked structures are like inverted trees but they also have pointers at each ordinary

node. Pointers act like traffic cops, and they point requests for matching data to data that may

exist on a different branch of the same inverted tree.

• Relational structures create relations between tables. They do this by designating some set of

columns in a table as a unique key. The unique keys let you connect rows from one table to

rows from another table.

• Object-oriented structures group data into structures with accessor and mutator methods. An

accessor method gets data from an object and is more commonly known as a getter. A

mutator method assigns values to an attribute (or field) in an object, and is more commonly

known as a setter.

• JSON is an acronym that stands for JavaScript Object Notation. JSON structures are name

and value pairs. The name can point to simple data, like a number or string; or a name can

point to a complex data, like a collection or embedded object.

Oracle, MySQL, DB2, PostgreSQL, and SQL Server are examples of relational database

management systems (RDBMS) software. While Oracle and PostgreSQL act as relational

databases, they also support objects. Because of their added behavior, Oracle and PostgreSQL

are also object relational database management systems (ORDBMS).

While most databases can support JSON objects in large text columns, there are specific

databases designed to manage name-value pairs. Cassandra and MongoDB are designed for high

concurrency and name-value pair management. They also support direct access to JSON objects.

Most relational database management systems provide a common query language to

work with data. The common query language is known as an application-programming interface

(API). In RDBMS systems, it is SQL (Structured Query Language), which is a shortened

acronym for SEQUEL (Structured English Query Language). SEQUEL was selected by IBM but

Copyright © 2014 Michael McLaughlin All rights reserved. 3!

dropped because it infringed on a trademark. Name-value pair databases don’t use SQL, and are

NoSQL databases because they have a different API.

Other query languages exist for non-relational database systems. Object-oriented

database management systems (OODBMS), like Versant, implement object-oriented

programming languages as their primary interface. XML databases, like the MarkLogic database,

implement XQuery as their query language.

Regardless of the database type, databases organize data in a structured format. The

structured format requires software to manage its organization and both maintain and query the

data.

Why is a database important?
Databases are important when they hold data that you need. The more data you need the

more important the database. They supplement your ability to remember facts. Just as calculators

let you perform accurate and quick math operations on numbers, databases let you find, add, and

remove data.

A great example of a simple database is a contact application in a smart phone. It lets you

add new, remove old, and find current contacts. Some contacts will have only their names and

telephone numbers, and both street and email addresses.

As the data you need increases, your ability to recall it eventually diminishes. Recall is

swamped by quantity. Databases record the information in an organized set of tables that contain

facts. Application software knows how those facts are stored, how you can add new facts.

Application software knows how those facts are stored, how you can add new facts, and how you

can combine facts into information.

The cost of building such an engine is expensive. The cost is prohibitive for most

software projects. Most application software incorporates a database management system

(DBMS) for this reason, like MySQL, Oracle, SQL Server, or SQLite. They adopt the DBMS

software’s standard application programming interface (API) for organizing and accessing the

data stored in the DBMS. This allows application software developers to focus on how the data

is meaningful.

While the API is critical to the success or failure of application software, its

maintainability and flexibility is conjoined to the successful organization of data in tables within

Copyright © 2014 Michael McLaughlin All rights reserved. 4!

the database. The choices made in organizing data in a database directly govern how and what

may happen in application software; a great database design provides the application software

with flexibility and avoids the pitfalls of corrupting data.

Another reason for the existence of DBMS software is the need to access different data

simultaneously by different users. We often discuss simultaneous user access as concurrent

access because we rarely have interest in the same datum (or piece of data). If two people have

interest in the same fact, then the first one that reaches it locks it until they’re done using it. Any

other party who wants access to the same fact must wait their turn to access it. This type of

access method acts like a first-in and first-out queue.

DBMS software can support the concurrent interaction of many users. Facts would be

lost or corrupted without that ability. For example, you may be able to focus on elements of two

conversations at the same time, but you’ll miss some details from each. Three concurrent

conversations stretch your ability further, and so forth. DBMS software disallows the loss of

concurrent details by managing them in separate channels. The channels are implemented by

DBMS software differently, but more or less it’s like having many concurrent processes or

threads of operation (see the processes and threads sidebar for more on this).

DBMS software implements these concurrent operations to gain processing benefits

unobtainable any other way. Databases achieve this through MultiVersion Concurrency Control,

which is abbreviated as MCC or MVCC. MCC ensures that one user won’t inadvertently destroy

another user’s change before it’s permanent. MCC does this by guaranteeing all changes to data

are ACID-compliant. ACID is an acronym for properties that guarantee the integrity of

concurrent operations on data. The phrase “concurrent operations on data” is wordy. More

often than not they’re referred to as database transactions.

ACID stands for atomicity, consistency, isolation, and durability. Atomicity means

everything or nothing will happen in a transaction. Consistent means that the data will change

from one state to another. Isolation means that no other user can see your changes until they’re

made permanent. Durable means that you’ve written them to disk.

Virtually all businesses need concurrent access to data, and while a few may think it’s

unnecessary, they agree it would be helpful. After all, not everyone will wait in a long line

(queue) for service. A queue may occur when two users want to change the same piece of data at

Copyright © 2014 Michael McLaughlin All rights reserved. 5!

the same time. DBMS software locks the data when the first person attempts the change and

holds that lock until they’ve completed their interaction with the database.

Processes and Threads
A process is a program running in a discrete or shared memory segment on a

computer. You or a program start (or launch) a process from the operating system. Once

launched, a process has complete control of its execution within the scope of privileges

granted by the operating system. Processes read and write information to memory in their

Process Control Block (PCB). When they complete their purpose, they relinquish their

memory space to the operating system. Processes may return values to the operating

system or write data to local or virtual disk.

A thread is a lightweight process. This is computer jargon or a fancy way of

saying that a process starts a thread within its memory space. This makes a thread part of

a process. Threads may read and write their own information to their Thread Control

Block (TCB). They may also read or write to the owning PCB. Like processes, they

relinquish their memory space at completion. Unlike processes, they release that memory

back to the owning process not the operating system. Threads typically return values to

the process management thread, which is also known as the thread of control.

Threads are most useful when processes want to divide and conquer the work they

perform. Threads allow them to spread the load because they can run in isolation at the

same time.

How does a database work?
A database works by using several components together. The components are: the client-

server model, listener processes, optimistic and pessimistic communication paradigms, session

management, locking, shared versus discrete memory, and repository management.

Client-Server Model
All databases provide an interface mechanism. That mechanism is generally called the

client or client software. The database server that maintains the data is the server.

Many relational databases provide client interfaces that support interactive and batch

modes of operation. Interactive mode is self-evident: the user types and see the result of the

Copyright © 2014 Michael McLaughlin All rights reserved. 6!

typing and execution of commands on the user’s console. Batch processing is a bit different.

Users submit a job in batch processing and typically see a log file that documents its execution.

Client software can communicate directly with the database across the network or

through operating system pipes. The communication can be through a proprietary access channel

or industry standards like the Open Database Connectivity (ODBC) or Java Database

Connectivity (JDBC). Major database products provide command-line interfaces that work in

both interactive and batch modes. Client tools, like Quest’s Toad, MySQL Workbench, Oracle

SQL Developer, and others, provide graphic user interfaces (GUIs) that interact with the server

like the command-line interface.

Client software generally requires you to install some software on your local computer.

The client software provides the tools that let you speak to the server software across the network

or through a local operating system pipe. While the ODBC model requires a set of dynamic link

libraries (a .dll on Windows) or shared object files (a .so on Linux or Unix). The JDBC

requires an implementation of a vendor provided Java ARchive file (JAR).

Aside from managing the data, server software implements an SQL statement-processing

engine. It also controls a listener process. Listeners are programs running in the background.

They listen for incoming requests on some operating system port or pipe. Requests are typically

messages sent from the client software. Server software also manages the base files where the

data is stored and log, redo, and archive log files.

Listener Processes
Listener processes run as part of the server software. They may run independently as

separate processes or as spawned subprocesses.

Once started, listeners actively listen on a server port. A server port is a virtual or logical

address through with one process can communicate with another process. The server program

process that runs on the port address is the listener process. Client program processes send

messages to the server at the port address and the listening process then creates a communication

socket between the client and server software.

Sockets are created on ephemeral (or transitory) ports. The communication between the

client and server software may be optimistic or pessimistic, which depends on how the request is

made.

Copyright © 2014 Michael McLaughlin All rights reserved. 7!

Optimistic and Pessimistic Communication Paradigms
There are two ways for the client software to communicate with the server software. One

approach is optimistic and the other is pessimistic.

A pessimistic connection requires a permanent channel between the client and server

software. While connected the client software can (a) instruct the server software to do many

things, (b) confirm whether the server software has performed those things, and (c) prevents

others from seeing the changes until the client software determines they’re complete. You

implement a pessimistic connection across a server side pipe or a network socket.

A server-side pipe is an Interprocess Communication (IPC) process. The server-side

operating system manages the pipe and how messages are sent and received through the pipe.

This type of communication requires that the client software be installed on the local machine

along with the server software. This is the typical configuration for all DBMS software.

Network sockets are two-way channels across a network. The network can be as simple

as the loopback on a server machine. Network sockets rely on TCP/IP (Transport Control

Protocol/Internet Protocol) communication. Moreover, these connections send data across one

channel and keep the connection alive through the other channel. The channel that keeps the

connection alive guarantees the state between the client and server processes.

Optimistic connections are like an instant message. The client simply sends the message.

Whether the message is received or not may require another message or two, and eventually a

reply from the other party. The model would place the client software in the role of texting the

first message and the server software in the role of responding to the text message. This

interchange pattern can rely on the User Datagram Protocol (UDP) or a timeout value on a

TCP/IP connection, and it is known as a stateless communication method.

You see this implementation when the client software communicates across the network

using the JDBC or ODBC communication frameworks. However, both of these frameworks may

support pessimistic communication when they implement a server-side module that maintains

state between interactions (or, self awareness and control across a series of instructions). An

example of this type of software is a JServlet.

Session Management

Session!management!occurs!when!the!client!software!connects!to!the!server!

through!its!listener!process.!The!duration!of!optimistic!connections!may!be!short!and!

Copyright © 2014 Michael McLaughlin All rights reserved. 8!

limited!to!a!single!SQL!statement!while!pessimistic!connections!may!be!long!and!involve!

multiple!SQL!statements.!

The!database!server!software!manages!the!number,!resource!access,!and!duration!of!

sessions.!Sessions!are!the!working!environment!for!users!who!connect!to!the!database!as!

authorized!users!in!the!database.!

Users!connecting!interactively!work!as!developers.!Applications!connect!as!users!

with!security!credentials!or!as!anonymous!users,!and!interact!through!an!API.!

Locking

Locking!prevents!another!user!from!changing!data!before!the!first!user!completes!

their!work!with!it.!Locking!is!a!major!part!of!the!process!that!guarantees!ACIDMcompliance!

in!a!concurrent!processing!environment.!A!DBMS!puts!a!lock!on!a!row,!set!of!rows,!or!table!

when!one!user!transacts!against!a!row.!Dependent!on!how!it!is!implemented,!locking!may!

prevent!another!user!from!querying!a!result!that’s!in!the!midst!of!change,!but!it!always!

prevents!another!user!from!changing!data!before!the!first!user!completes!their!work!with!

it.!

Whether!locking!impacts!a!row,!set!of!rows,!or!table!is!an!implementation!detail!of!

the!DBMS.!The!more!robust!DBMS!software!locks!the!smallest!amount!of!data!necessary.!

Locks!are!released!when!the!original!user!completes!their!work!and!signals!the!

database!they’ve!finished!their!changes.!The!signal!is!made!with!a!COMMIT!statement!when!

they!want!to!make!their!change(s)!permanent,!and!a!ROLLBACK!statement!when!they!want!

to!undo!their!change(s).!

Shared versus Discrete Memory

Memory!in!a!computer!is!where!information!is!stored!to!run!programs.!Random!

Access!Memory!(RAM)!is!limited!and!dedicated!to!running!programs!without!reading!and!

writing!to!disk.!Whereas,!memory!is!also!disk!storage.!When!programs!use!all!available!

RAM,!they!cache!segments!of!memory!(known!as!pages)!to!disks,!and!this!type!of!cached!

memory!is!virtual!memory.!

Starting!programs!on!a!computer!launches!a!process.!A!process!may!be!single!

threaded!or!multithreaded.!A!process!requests!memory!when!it!starts.!The!request!may!

Copyright © 2014 Michael McLaughlin All rights reserved. 9!

ask!for!a!dedicated!(discrete)!or!shared!memory!segment.!The!operating!system!kernel!

replies!to!the!request!and!allocates!memory!to!the!program.!

Shared!memory!describes!the!process!of!creating!a!memory!segment!that!you!want!

to!share!with!other!processes.!Discrete!memory!describes!the!process!of!creating!a!

memory!segment!that!you!want!to!use!exclusively!by!a!single!program.!

Some!DBMS!software!uses!a!shared!memory!segment!for!all!interactions!with!the!

database.!In!those!cases,!the!DBMS!allocates!a!portion!of!the!memory!to!each!database!

connection.!

Using!a!single!shared!memory!segment!is!a!form!of!static!marshaling.!Implementers!

prefer!static!marshaling!because!it!eliminates!the!dynamic!marshaling!cost.!Dynamically!

marshaling!allocates!and!deallocates!memory!for!each!database!connection.!

Static!marshaling!makes!the!footprint!of!the!memory!more!consistent,!contiguous,!

and!manageable.!There!are!various!ways!to!describe!memory!management,!and!each!

vendor!has!their!own!vocabulary!to!describe!the!process.!

Discrete!memory!is!seldom!implemented!for!concurrent!DBMS!software.!The!cost!of!

dynamic!marshaling!is!why!it’s!avoided.!

Repository Management

The!serverMside!component!of!the!DBMS!consists!of!two!principal!parts.!One!is!a!

data!repository!and!the!other!is!a!set!of!programs!that!manage!the!repository.!Most!

modern!databases!actually!manage!more!than!one!repository!(or!database!instance)!with!

the!same!set!of!programs.!

The!data!repository!is!synonymous!with!the!term!database!or!the!more!technical!

and!accurate!database!instance.!The!set!of!programs!make!sure!that!all!activities!in!the!

database!comply!with!the!MVCC!rules!and!ACIDMcompliance!of!operations.!These!programs!

also!ensure!the!integrity!of!memory!segments,!sessions,!and!resource!locking.!They!write!

log!files!that!let!the!database!stepMbackward!in!time!to!undo!operations!and!provide!the!

ability!to!recover!operations!when!something!fails.!

Databases!created!by!DBMS!systems!often!involve!more!than!a!single!physical!file.!

DBMS!software!manages!the!process!of!reading,!writing,!and!controlling!these!files.!As!a!

rule,!you!never!have!the!ability!to!write!to!the!data!files!of!a!database!instance.!

Copyright © 2014 Michael McLaughlin All rights reserved. 10!

Vendors!implement!various!mechanics!to!support!these!data!files.!They!also!create!

various!files!that!support!different!activities,!like!control!files,!redo!log!files,!and!archive!log!

files.!Control!files!keep!inventory!of!all!files!involved!in!a!single!database!instance.!Redo!log!

files!keep!track!of!changes!before!they’re!permanent!and!after!they’re!committed!or!rolled!

back.!They!only!contain!very!recent!information.!The!DBMS!may!discard!redo!log!files!

through!normal!processing!or!transfer!their!content!to!archive!log!files.!Archive!log!files!

keep!track!of!changes!made!over!a!long!period!of!time!and!facilitate!backup!and!recovery!

when!a!major!error!occurs.!

Summary
This!paper!explained!what!a!database!is,!why!it’s!important,!and!how!it!works.!It!

discussed!the!following!key!elements:!the!clientMserver!model,!the!databases!listener,!the!

difference!between!optimistic!and!pessimistic!connections,!session!management,!locking,!

and!the!differences!between!shared!and!discrete!memory,!and!concept!of!repository!

management.

